

Cambridge O Level

CAN NAN	DIDATE	
	TRE CANDIDATE NUMBER	
Сн	MISTRY	5070/31
Рар	er 3 Practical Test	May/June 2022
		1 hour 30 minutes
CHI Pap You	must answer on the question paper.	

You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do **not** write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets []. •
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use		
1		
2		
Total		

This document has 8 pages. Any blank pages are indicated.

1 P is a mixture of equal volumes of dilute hydrochloric acid, HC*l*, and dilute sulfuric acid, H_2SO_4 .

The concentration of hydrogen ions in ${\bf P}$ is determined by titrating this solution with aqueous sodium carbonate, ${\bf Q}$.

Q is $0.275 \text{ mol}/\text{dm}^3$ sodium carbonate, Na₂CO₃.

(a) Put P into the burette.

Pipette 25.0 cm^3 of **Q** into a flask and titrate with **P**, using methyl orange indicator.

Record your results in the table, repeating the titration as many times as you consider necessary to achieve consistent results.

Results

Burette readings

titration number	1	2	
final reading/cm ³			
initial reading/cm ³			
volume of P used/cm ³			
best titration results (\checkmark)			

Summary

Tick (\checkmark) the best titration results.

(b) **Q** is $0.275 \text{ mol}/\text{dm}^3$ sodium carbonate.

The ionic equation for the reaction is shown.

$$\mathrm{CO}_3^{2-} + 2\mathrm{H}^+ \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{CO}_2$$

Use your results from (a) to calculate the concentration, in mol/dm³, of hydrogen ions in **P**.

Give your answer to three significant figures.

..... mol/dm³ [2]

 ${\bf P}$ is a mixture of dilute hydrochloric acid, HC1, and dilute sulfuric acid, H_2SO_4.

The concentration of hydrochloric acid in P is 0.135 mol/dm³.

(c) Use your answer from (b) to calculate the number of moles of hydrogen ions from sulfuric acid in 1.00 dm³ of **P**.

..... mol [1]

(d) Use your answer from (c) to calculate the concentration, in mol/dm³, of sulfuric acid in P.

..... mol/dm³ [1]

(e) **P** is a mixture of equal volumes of dilute hydrochloric acid, HC*l*, and dilute sulfuric acid, H_2SO_4 .

Calculate the concentration, in mol/dm³, of the dilute hydrochloric acid used to make **P**.

..... mol/dm³ [1]

(f) Write the formulae of the **two** salts formed during this titration.

..... and [1]

[Total: 18]

- 2 You are provided with two solutions, \mathbf{R} and \mathbf{S} .
 - (a) Do the following tests on **R** and record your observations in the table.

test no.		test	observations
1	(i)	To 1 cm depth of R in a test-tube, add an equal volume of aqueous silver nitrate and leave to stand.	
	(ii)	To the mixture from (i) , add 1 cm depth of dilute nitric acid.	
2	(i)	To 1 cm depth of R in a test-tube, add aqueous sodium hydroxide until a change is seen.	
	(ii)	To the mixture from (i) , add excess aqueous sodium hydroxide.	
3	(i)	To 1 cm depth of R in a test-tube, add a small amount of ascorbic acid and mix well.	
	(ii)	To the mixture from (i) , add aqueous sodium hydroxide until no further change is seen.	
4	(i)	To 1 cm depth of R in a test-tube, add an equal volume of aqueous potassium iodide.	
	(ii)	To the mixture from (i) , add 1 or 2 drops of starch indicator.	

[9]

(b) Conclusion

The cation in R responsible for the observations in test 2 is	[1]
---	-----

(c) Do the following tests on **S** and record your observations in the table.

Test and name any gas evolved.

test no.		test	observations
1	(i)	To 1 cm depth of S in a test-tube, add an equal volume of aqueous barium nitrate.	
	(ii)	To the mixture from (i) , add 1 cm depth of dilute nitric acid.	
2	(i)	To 1 cm depth of S in a test-tube, add aqueous ammonia until a change is seen.	
	(ii)	To the mixture from (i) , add excess aqueous ammonia.	
3	(i)	To 1 cm depth of S in a boiling tube, add aqueous sodium hydroxide until a change is seen.	
	(ii)	To the mixture from (i) , add excess aqueous sodium hydroxide.	
	(iii)	Warm the mixture from (ii) in the boiling tube.	

[9]

(d) Conclusions

The solid used to prepare solution **S** contains two cations and one anion.

Identify these ions.

cations and

anion

BLANK PAGE

6

BLANK PAGE

QUALITATIVE ANALYSIS NOTES

Tests for anions

anion	test	test result
carbonate (CO ₃ ^{2–})	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide, then add aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ^{2–}) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt., insoluble in excess dilute nitric acid

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (Al ³⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	_
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt.
chromium(III) (Cr ³⁺)	green ppt., soluble in excess, giving a green solution	green ppt., insoluble in excess
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Tests for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (C l_2)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.