
ZNOTES.ORG

SUMMARIZED NOTES ON THE PRACTICAL SYLLABUS

COMPUTER
SCIENCE (9618)

CAIE AS LEVEL
UPDATED TO 2017 SYLLABUS

1. Algorithm Design &
Problem-Solving

Abstraction: filtering out and concentrating on the
relevant information in a problem; allowing a
programmer to deal with complexity
Decomposition: breaking down problems into sub-
problems in order to understand a process more clearly;
program modules, procedures and functions all help the
programmer to break down large problems
Algorithm: a solution to a problem expressed as a
sequence of steps

1.2. Identifier Table

Identifier: name given to a variable in order to call it
An identifier table depicts information about the variable,
e.g.

Rules for naming identifiers:
Must be unique
Spaces must not be used
Must begin with a letter of the alphabet
Consist only of a mixture of letters and digits and the
underscore character ‘_’
Must not be a ‘reserved’ word – e.g. Print, If, etc.

1.3. Basic Program Operations

Assignment: an instruction in a program that places a
value into
a specified variable
Sequence: programming statements are executed
consequently, as
they appear in the program
Selection: control structure in which there is a test to
decide
if certain instructions are executed

IF selection: testing 2 possible outcomes
CASE selection: testing more than 2 outcomes

Repetition/Iteration: control structure in which a group of
statements is executed repeatedly

FOR loop: count-controlled; executed a set no. of
times
WHILE loop: pre-conditional; executed based on
condition at start of statements
REPEAT loop: post-conditional; executed based on
condition at end of statements

As for selecting what loop to use, it is best to use FOR loops
when you know the number of iterations required, and a

WHILE or REPEAT loop if you do not know the number of
iterations required.

Iterate over an array: FOR Loop
Reading a file into a variable: WHILE Loop
Asking for user input: WHILE/REPEAT Loop
A loop that should execute n times: FOR Loop

1.4. Stepwise Refinement

Process of developing a modular design by splitting a
problem into
smaller sub-tasks, which themselves are
repeatedly split into even
smaller sub-tasks until each is
just one element of the final
program.

1.5. Program Modules

This refers to a modular program design
Subroutines: self-contained section of code, performing a
specific task; part of the main program
Procedures: performs a specific task, no value returned
to part
of code where called
Functions: performs a specific task, returns a value to
part of
code where called

1.6. Logic Statements

Operator Meaning

< Less than

<= Less than/equal

> Greater than

>= Greater/equal

== Equal to

!= Not equal to

2. Data Representation

2.1. Data Types

Integer:

Positive or negative number; no fractional part
Held in pure binary for processing and storage
Some languages differentiate short/long integers (more
bytes used to
store long integers)

Real:

Number that contains a decimal point
Referred to as singles and doubles depending upon
number of bytes
used to store

Character:

A character is any letter, number, punctuation or space

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

Takes up a single unit of storage (usually a byte).

String:

Combination of alphanumeric characters enclosed in “ ”
Each character stored in one byte using ASCII code
Each character stored in two bytes using Unicode
Max length of a string limited by available memory.
Incorrect to store dates or numbers as strings
Phone no. must be stored as string else initial 0 lost

Boolean:

Can store one of only two values; “True” or “False”
Stored in 1 byte: True = 11111111, False = 00000000

Date:

Dates are stored as a ‘serial’ number
Equates to number of seconds elapsed since 1st January
1970 00:00:00 UTC, excluding leap seconds.
Usually take 8 bytes of storage
Displayed as dd/mm/yyyy or mm/dd/yyyy

Array:

Data structure consisting of a collection of elements
Identified by at least one array index (or key)

File:

Object that stores data, information, settings or
commands
Can be opened, saved, deleted & moved
Transferrable across network connections

2.2. ASCII Code

Uses 1 byte to store a character

7 bits available to store data and 8th bit is a check
digit

27 = 128, therefore 128 different values
ASCII values can take many forms: numbers, letters
(capitals and
lower case are separate), punctuation, non-
printing commands (enter,
escape, F1)

2.3. Unicode

ASCII allows few number of characters; good for English
Unicode allows others too: Chinese, Greek, Arabic etc.
Different types of Unicode:

UTF-8: compatible with ASCII, variable-width encoding
can expand to 16, 24, 32, 40, 48
UTF-16: 16-bit, variable-width encoding can expand to
32 bits
UTF-32: 32 bit, fixed-width encoding, each character
exactly 32
bits

2.4. Arrays

1-Dimensional (1D) Array: declared using a single index,
can be represented as a list

2-Dimensional (2D) Array: declared using two indices, can
be
represented as a table

Pseudocode:
1-D Array: array = []
2-D Array: array = [[], [], [], …]

Python:
Declaring an array: names = []
Adding to an array: names.append(‘ZNotes’)
Length of array i.e. number of elements: len(names)
Printing an element in a 1D array:
print(names[element position])

Printing element in a 2D array: print (a[row]
[column])

Printing row in a 2D array: names[row] = [new
row]
Printing column: use for loop and keep adding 1 to
the row and keep column same

2.5. Bubble Sort

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

A FOR loop is set to stop the sort
Setting a variable ‘sorted’ to be ‘true’ at the beginning
Another FOR loop is set up next in order to search
through the array
An IF is used to see if the first number of the array is
greater
than the second. If true:

First number stored to variable
Second number assigned as first number
Stored variable assigned to second number
Set ‘sorted’ to ‘false’ causing loop to start again

The second FOR loop is count based thus will stop after a
specific
number of times
Goes through bigger FOR loop ‘sorted’ remains ‘true’
This exits the loop ending the program

2.6. Linear Search

A FOR loop goes through the array
It compares item in question to those in list using an IF:

If item matches with another then search is stopped
Also the location where it was found is returned
If not found it exits the FOR loop

Then returns fact that item in question is not in the list

2.7. File Handling

Files are needed to import contents (from a file) saved in
secondary
memory into the program, or to save the
output of a program (in a
file) into secondary memory, so
that it is available for future use

Pseudocode:

Opening a file: OPENFILE <filename> FOR
READ/WRITE/APPEND
Reading a file: READFILE <filename>
Writing a line of text to the file: WRITEFILE
<filename>, <string>

Closing a file: CLOSEFILE
Testing for end of the file: EOF()

Python:

Opening a file: variable = open(“filename”,
“mode”)

Where the mode can be:
Mode Description

r
Opens file for reading only. Pointer placed at the

beginning of the file.

w
Opens a file for writing only. Overwrites file if file

exists or creates new file if it doesn’t

a
Opens a file for appending. Pointer at end of file

if it exists or creates a new file if not

Reading a file:
Read all characters: variable.read()
Read each line and store as list:
variable.readlines()

Writing to a file:
Write a fixed a sequence of characters to file:
variable.write(“Text”)

Write a list of string to file: variable.write(‘
‘.join(‘Z’, ‘Notes’))

Abstract Data Types
(ADT)

An Abstract Data Type (ADT) is a collection of data with
associated operations. There are three types of ADTs:

Stack: an ordered collection of items where the addition
of new items and removal of existing items always takes
place at the same end.
Queue: a linear structure which follows the First In First
Out (FIFO) mechanism. Items are added at one end
(called the rear) and removed from the other end (called
the front)
Linked List: a linear collection of data elements whose
order is not given by physical placements in memory
(non-contiguous). Each element points to the next.

3. Programming
Programming is a transferable skill
Transferable skill: skills developed in one situation which
can
be transferred to another situation.

3.2. Variables

Declaring a variable:

∴
∴

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

Pseudocode: ‘’’python DECLARE <identifier> : <data
type> ‘’’
Python: no need to declare however must write above
as a comment
(‘’’python #...‘’’)

Assigning variables:

‘’’python <identifier> ← <value>‘’’ or ‘’’python
<expression>‘’’

‘’’python identifier = value‘’’ or ‘’’python expression‘’’ or
‘’’python
“string”‘’’

3.3. Selections

“IF” Statement
Pseudocode: IF…THEN…ELSE…ENDIF
Python: if (expression): (statements) else:
(statements)

“CASE” Statement
Pseudocode: CASE OF variable: … … …
OTHERWISE: … ENDCASE

Python: if (expression): (statement) elif
(expression): statement) … else:
(statement)

3.4. Iterations

Count-controlled Loop
FOR <identifier> ← <val1> TO

<val2> STEP <val3>
<statement(s)>

ENDFOR

for x in range(value1, value2):
statement(s)

Post condition Loop
REPEAT

<statement(s)>
UNTIL <condition>

Not possible in Python
Use ‘’’python WHILE‘’’ and

‘’’python IF‘’’

Pre-condition Loop
WHILE <condition>

<statement(s)>
ENDWHILE

while expression:
statement(s)

3.5. Built-in Functions

String/character manipulation:

Uppercase or lowercase all characters:
(“string”).upper() (“string”).lower()

Finding length of a string: len(“string”)
Converting:

String to Integer - int(“string”)
Integer to String - str(integer)

Random number generator: random.randint(a, b)
Where a and b defines the range

3.6. Benefits of Procedures and
Functions:

Lines of code can be re-used; don’t have to be repeated
Can be tested/improved independently of program
Easy to share procedures/functions with other programs
Create routines that can be called like built-in command

3.7. Procedure

Procedure: subroutine that performs a specific task without
returning a value

Procedure without parameters:

PROCEDURE
<statement(s)>ENDPROCEDURE

def
identifier():statement(s)

When a procedure has a parameter, the function can
either pass it by either reference or value
Pass by value: data copied into procedure so variable not
changed outside procedure

PROCEDURE <identifier> (BYVALUE <param>:
<datatype>)
<statement(s)>
ENDPROCEDURE
def identifier(param):
statement(s)

Pass by reference: link to variable provided so variable
changed after going through procedure (not in Python)

PROCEDURE <identifier> (BYREF <param>:
<datatype>)
<statement(s)>
ENDPROCEDURE

Calling a procedure:

CALL () Identifier()

3.8. Function

Function: subroutine that performs a specific task and
returns a value
Functions are best used to avoid having repeating blocks of
code in a program, as well as increasing the reusability of
code in a large program.
FUNCTION <identifier> (<parameter>: <data
type>) RETURNS <datatype>
<statement(s)>
ENDFUNCTION
def identifier(param):
statement(s)
return expression

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

4. Software Development

4.1. Program Development Cycle

Analyze problem: define problem, record program
specifications
and recognize inputs, process, output & UI
Design program: develop logic plan, write algorithm in
e.g.
pseudocode or flowchart and test solution
Code program: translate algorithm into high level
language with
comments/remarks and produce user
interface with executable
processes
Test and debug program: test program using test data,
find and
correct any errors and ensure results are correct
Formalize solution: review program code, revise internal
documentation and create end-user documentation
Maintain program: provide education and support to
end-user,
correct any bugs and modify if user requests

There are three different development life cycles:

Waterfall model: a classical model, used to create a
system with a linear approach, from one stage to another
Iterative model: a initial representation starts with a small
subset, which becomes more complex over time until the
system is complete
Rapid Application Development (RAD) model: a
prototyping model, with no (or less) specific planning put
into it. More emphasis on development and producing a
product-prototype.

4.2. Integrated Development
Environment

A software application that allows the creation of a
program e.g.
Python
Consists of a source code editor, build automation tools,
a debugger

Coding:

Reserved words are used by it as command prompts
Listed in the end-user documentation of IDE
A series of files consisting of preprogrammed-
subroutines may also
be provided by the IDE

Initial Error Detection:

The IDE executes the code & initial error detection carried
out by
compiler/interpreter doing the following:

Syntax/Logic Error: before program is run, an error
message
warns the user about this
Runtime Error: run of the program ends in an error

Debugging:

Single stepping: traces through each
line of code and
steps into procedures. Allows you to view the
effect of
each statement on variables

Breakpoints: set within code; program
stops temporarily
to check that it is operating correctly up to that
point
Variable dumps (report window): at
specific parts of
program, variable values shown for comparison

4.3. Structure Charts

Purpose: used in structured programming to arrange
program
modules, each module represented by a box
Tree structure visualizes relationships between modules,
showing
data transfer between modules using arrows.
Example of a top-down design where a problem
(program) is broken
into its components.

Rules:

Process: Represents a programming module e.g. a
calculation

Data couple: Data being passed from module to module
that needs
to be processed

Flag: Check data sent to start or stop a process. E.g. check
if
data sent in the correct format

Selection: Condition will be checked and depending on
the
result, different modules will be executed

Iteration: Implies that module is executed multiple times

Example:

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

4.4. Types of Errors

Syntax errors:

When source code does not obey rules of the language
Compiler generates error messages
Examples:

Misspell identifier when calling it
Missing punctuation – colon after if
Incorrectly using a built-in function
Argument being made does not match data type

Run-time errors:

Source code compiles to machine code but fails upon
execution (red
lines show up in Python)
When the program keeps running and you have to kill it
manually
Examples:

Division by 0
Infinite loop – will not produce error message,
program will
just not stop until forced to

Logic errors:

Program works but gives incorrect output
Examples:

Out By One – when ‘>’ is used instead of ‘>=’
Misuse of logic operators

4.5. Corrective Maintenance

Corrective Maintenance is correcting identified errors
White-Box testing: making sample data and running it
through a
trace table
Trace table: technique used to test algorithms; make sure
that
no logical errors occur e.g.

4.6. Adaptive Maintenance

Making amendments to:
Parameters: due to changes in specification
Logic: to enhance functionality or more faster or both
Design: to make it more user friendly

4.7. Testing Strategies

Black box testing:

Use test data for which results already calculated &
compare result
from program with expected results
Testing only considers input and output and the code is
viewed as
being in a ‘black box’

White box testing:

Examine each line of code for correct logic and accuracy.
May record value of variables after each line of code
Every possible condition must be tested

Stub testing:

Stubs are computer programs that act as temporary
replacement for a
called module and give the same
output as the actual product or
software.
Important when code is not completed however must be
tested so
modules are replaced by stubs

Dry run testing:

A process where code is manually traced, without any
software used
The value of a variable is manually followed to check
whether it is used and updated as expected
Used to identify logic errors, but not execution errors

Walkthrough testing:

A test where the code is reviewed carefully by the
developer’s peers, managers, team members, etc.
It is used to gather useful feedback to further develop the
code.

Integration testing:

Taking modules that have been tested on individually and
testing on them combined together

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

This method allows all the code snippets to integrate with
each other, making the program work.

Alpha testing:

This is the testing done on software ‘in-house’, meaning it
is done by the developers
Basically another term for ‘first round of testing’

Beta testing:

This is the testing done on the software by beta users,
who use the program and report any problems back to

the developer.
Basically another term for ‘second round of testing’

Acceptance testing:

A test carried out by the intended users of the system:
the people who requested the software.
The purpose is to check that the software performs
exactly as required.
The acceptance criteria should completely be satisfied for
the program to be released.

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

CAIE AS LEVEL
Computer Science (9618)

Copyright 2022 by ZNotes
These notes have been created by Zubair Junjunia for the 2017 syllabus
This website and its content is copyright of ZNotes Foundation - © ZNotes Foundation 2022. All rights reserved.
The document contains images and excerpts of text from educational resources available on the internet and
printed books. If you are the owner of such media, test or visual, utilized in this document and do not accept its
usage then we urge you to contact us and we would immediately replace said media.
No part of this document may be copied or re-uploaded to another website without the express, written
permission of the copyright owner. Under no conditions may this document be distributed under the name of
false author(s) or sold for financial gain; the document is solely meant for educational purposes and it is to remain
a property available to all at no cost. It is current freely available from the website www.znotes.org
This work is licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International License.

