
ZNOTES.ORG

SUMMARIZED NOTES ON THE PRACTICAL SYLLABUS

COMPUTER
SCIENCE (9618)

CAIE AS LEVEL
UPDATED TO 2017 SYLLABUS

1. Algorithm Design &
Problem-Solving

Abstraction: �ltering out and concentrating on the
relevant information in a problem; allowing a
programmer to deal with complexity
Decomposition: breaking down problems into sub-
problems in order to understand a process more clearly;
program modules, procedures and functions all help the
programmer to break down large problems
Algorithm: a solution to a problem expressed as a
sequence of steps

1.2. Identi�er Table

Identi�er: name given to a variable in order to call it
An identi�er table depicts information about the variable,
e.g.

Rules for naming identi�ers:
Must be unique
Spaces must not be used
Must begin with a letter of the alphabet
Consist only of a mixture of letters and digits and the
underscore character ‘_’
Must not be a ‘reserved’ word – e.g. Print, If, etc.

1.3. Basic Program Operations

Assignment: an instruction in a program that places a
value into a speci�ed variable
Sequence: programming statements are executed
consequently, as they appear in the program
Selection: control structure in which there is a test to
decide if certain instructions are executed

IF selection: testing 2 possible outcomes
CASE selection: testing more than 2 outcomes

Repetition/Iteration: control structure in which a group of
statements is executed repeatedly

FOR loop: count-controlled; executed a set no. of
times
WHILE loop: pre-conditional; executed based on
condition at start of statements
REPEAT loop: post-conditional; executed based on
condition at end of statements

As for selecting what loop to use, it is best to use FOR loops
when you know the number of iterations required, and a

WHILE or REPEAT loop if you do not know the number of
iterations required.

Iterate over an array: FOR Loop
Reading a �le into a variable: WHILE Loop
Asking for user input: WHILE/REPEAT Loop
A loop that should execute n times: FOR Loop

1.4. Stepwise Re�nement

Process of developing a modular design by splitting a
problem into smaller sub-tasks, which themselves are
repeatedly split into even smaller sub-tasks until each is
just one element of the �nal program.

1.5. Program Modules

This refers to a modular program design
Subroutines: self-contained section of code, performing a
speci�c task; part of the main program
Procedures: performs a speci�c task, no value returned
to part of code where called
Functions: performs a speci�c task, returns a value to
part of code where called

1.6. Logic Statements

Operator Meaning

< Less than

<= Less than/equal

> Greater than

>= Greater/equal

== Equal to

!= Not equal to

2. Data Representation

2.1. Data Types

Integer:

Positive or negative number; no fractional part
Held in pure binary for processing and storage
Some languages di�erentiate short/long integers (more
bytes used to store long integers)

Real:

Number that contains a decimal point
Referred to as singles and doubles depending upon
number of bytes used to store

Character:

A character is any letter, number, punctuation or space

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

Takes up a single unit of storage (usually a byte).

String:

Combination of alphanumeric characters enclosed in “ ”
Each character stored in one byte using ASCII code
Each character stored in two bytes using Unicode
Max length of a string limited by available memory.
Incorrect to store dates or numbers as strings
Phone no. must be stored as string else initial 0 lost

Boolean:

Can store one of only two values; “True” or “False”
Stored in 1 byte: True = 11111111, False = 00000000

Date:

Dates are stored as a ‘serial’ number
Equates to number of seconds elapsed since 1st January
1970 00:00:00 UTC, excluding leap seconds.
Usually take 8 bytes of storage
Displayed as dd/mm/yyyy or mm/dd/yyyy

Array:

Data structure consisting of a collection of elements
Identi�ed by at least one array index (or key)

File:

Object that stores data, information, settings or
commands
Can be opened, saved, deleted & moved
Transferrable across network connections

2.2. ASCII Code

Uses 1 byte to store a character

7 bits available to store data and 8th bit is a check digit

27 = 128, therefore 128 di�erent values
ASCII values can take many forms: numbers, letters
(capitals and lower case are separate), punctuation, non-
printing commands (enter, escape, F1)

2.3. Unicode

ASCII allows few number of characters; good for English
Unicode allows others too: Chinese, Greek, Arabic etc.
Di�erent types of Unicode:

UTF-8: compatible with ASCII, variable-width encoding
can expand to 16, 24, 32, 40, 48
UTF-16: 16-bit, variable-width encoding can expand to
32 bits
UTF-32: 32 bit, �xed-width encoding, each character
exactly 32 bits

2.4. Arrays

1-Dimensional (1D) Array: declared using a single index,
can be represented as a list

2-Dimensional (2D) Array: declared using two indices, can
be represented as a table

Pseudocode:
1-D Array: array = []
2-D Array: array = [[], [], [], …]

Python:
Declaring an array: names = []
Adding to an array: names.append(‘ZNotes’)
Length of array i.e. number of elements: len(names)
Printing an element in a 1D array:
print(names[element position])

Printing element in a 2D array: print (a[row]
[column])

Printing row in a 2D array: names[row] = [new
row]
Printing column: use for loop and keep adding 1 to
the row and keep column same

2.5. Bubble Sort

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

A FOR loop is set to stop the sort
Setting a variable ‘sorted’ to be ‘true’ at the beginning
Another FOR loop is set up next in order to search
through the array
An IF is used to see if the �rst number of the array is
greater than the second. If true:

First number stored to variable
Second number assigned as �rst number
Stored variable assigned to second number
Set ‘sorted’ to ‘false’ causing loop to start again

The second FOR loop is count based thus will stop after a
speci�c number of times
Goes through bigger FOR loop ‘sorted’ remains ‘true’
This exits the loop ending the program

2.6. Linear Search

A FOR loop goes through the array
It compares item in question to those in list using an IF:

If item matches with another then search is stopped
Also the location where it was found is returned
If not found it exits the FOR loop

Then returns fact that item in question is not in the list

2.7. File Handling

Files are needed to import contents (from a �le) saved in
secondary memory into the program, or to save the
output of a program (in a �le) into secondary memory, so
that it is available for future use

Pseudocode:

Opening a �le: OPENFILE <filename> FOR
READ/WRITE/APPEND
Reading a �le: READFILE <filename>
Writing a line of text to the �le: WRITEFILE
<filename>, <string>

Closing a �le: CLOSEFILE
Testing for end of the �le: EOF()

Python:

Opening a �le: variable = open(“filename”,
“mode”)

Where the mode can be:
Mode Description

r
Opens �le for reading only. Pointer placed at the

beginning of the �le.

w
Opens a �le for writing only. Overwrites �le if �le

exists or creates new �le if it doesn’t

a
Opens a �le for appending. Pointer at end of �le

if it exists or creates a new �le if not

Reading a �le:
Read all characters: variable.read()
Read each line and store as list:
variable.readlines()

Writing to a �le:
Write a �xed a sequence of characters to �le:
variable.write(“Text”)

Write a list of string to �le: variable.write(‘
‘.join(‘Z’, ‘Notes’))

Abstract Data Types
(ADT)

An Abstract Data Type (ADT) is a collection of data with
associated operations. There are three types of ADTs:

Stack: an ordered collection of items where the addition
of new items and removal of existing items always takes
place at the same end.
Queue: a linear structure which follows the First In First
Out (FIFO) mechanism. Items are added at one end
(called the rear) and removed from the other end (called
the front)
Linked List: a linear collection of data elements whose
order is not given by physical placements in memory
(non-contiguous). Each element points to the next.

3. Programming
Programming is a transferable skill
Transferable skill: skills developed in one situation which
can be transferred to another situation.

3.2. Variables

Declaring a variable:

∴
∴

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

Pseudocode: ‘’’python DECLARE <identi�er> : <data
type> ‘’’
Python: no need to declare however must write above
as a comment (‘’’python #...‘’’)

Assigning variables:

‘’’python <identi�er> ← <value>‘’’ or ‘’’python
<expression>‘’’

‘’’python identi�er = value‘’’ or ‘’’python expression‘’’ or
‘’’python “string”‘’’

3.3. Selections

“IF” Statement
Pseudocode: IF…THEN…ELSE…ENDIF
Python: if (expression): (statements) else:
(statements)

“CASE” Statement
Pseudocode: CASE OF variable: … … …
OTHERWISE: … ENDCASE

Python: if (expression): (statement) elif
(expression): statement) … else:
(statement)

3.4. Iterations

Count-controlled Loop
FOR <identi�er> ← <val1> TO

<val2> STEP <val3>
<statement(s)>

ENDFOR

for x in range(value1, value2):
statement(s)

Post condition Loop
REPEAT

<statement(s)>
UNTIL <condition>

Not possible in Python
Use ‘’’python WHILE‘’’ and

‘’’python IF‘’’

Pre-condition Loop
WHILE <condition>

<statement(s)>
ENDWHILE

while expression:
statement(s)

3.5. Built-in Functions

String/character manipulation:

Uppercase or lowercase all characters:
(“string”).upper() (“string”).lower()

Finding length of a string: len(“string”)
Converting:

String to Integer - int(“string”)
Integer to String - str(integer)

Random number generator: random.randint(a, b)
Where a and b de�nes the range

3.6. Bene�ts of Procedures and
Functions:

Lines of code can be re-used; don’t have to be repeated
Can be tested/improved independently of program
Easy to share procedures/functions with other programs
Create routines that can be called like built-in command

3.7. Procedure

Procedure: subroutine that performs a speci�c task without
returning a value

Procedure without parameters:

PROCEDURE
<statement(s)>ENDPROCEDURE

def
identi�er():statement(s)

When a procedure has a parameter, the function can
either pass it by either reference or value
Pass by value: data copied into procedure so variable not
changed outside procedure

PROCEDURE <identifier> (BYVALUE <param>:
<datatype>)
<statement(s)>
ENDPROCEDURE
def identifier(param):
statement(s)

Pass by reference: link to variable provided so variable
changed after going through procedure (not in Python)

PROCEDURE <identifier> (BYREF <param>:
<datatype>)
<statement(s)>
ENDPROCEDURE

Calling a procedure:

CALL () Identi�er()

3.8. Function

Function: subroutine that performs a speci�c task and
returns a value
Functions are best used to avoid having repeating blocks of
code in a program, as well as increasing the reusability of
code in a large program.
FUNCTION <identifier> (<parameter>: <data
type>) RETURNS <datatype>
<statement(s)>
ENDFUNCTION
def identifier(param):
statement(s)
return expression

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

4. Software Development

4.1. Program Development Cycle

Analyze problem: de�ne problem, record program
speci�cations and recognize inputs, process, output & UI
Design program: develop logic plan, write algorithm in
e.g. pseudocode or �owchart and test solution
Code program: translate algorithm into high level
language with comments/remarks and produce user
interface with executable processes
Test and debug program: test program using test data,
�nd and correct any errors and ensure results are correct
Formalize solution: review program code, revise internal
documentation and create end-user documentation
Maintain program: provide education and support to
end-user, correct any bugs and modify if user requests

There are three di�erent development life cycles:

Waterfall model: a classical model, used to create a
system with a linear approach, from one stage to another
Iterative model: a initial representation starts with a small
subset, which becomes more complex over time until the
system is complete
Rapid Application Development (RAD) model: a
prototyping model, with no (or less) speci�c planning put
into it. More emphasis on development and producing a
product-prototype.

4.2. Integrated Development
Environment

A software application that allows the creation of a
program e.g. Python
Consists of a source code editor, build automation tools,
a debugger

Coding:

Reserved words are used by it as command prompts
Listed in the end-user documentation of IDE
A series of �les consisting of preprogrammed-
subroutines may also be provided by the IDE

Initial Error Detection:

The IDE executes the code & initial error detection carried
out by compiler/interpreter doing the following:

Syntax/Logic Error: before program is run, an error
message warns the user about this
Runtime Error: run of the program ends in an error

Debugging:

Single stepping: traces through each line of code and
steps into procedures. Allows you to view the e�ect of
each statement on variables

Breakpoints: set within code; program stops temporarily
to check that it is operating correctly up to that point
Variable dumps (report window): at speci�c parts of
program, variable values shown for comparison

4.3. Structure Charts

Purpose: used in structured programming to arrange
program modules, each module represented by a box
Tree structure visualizes relationships between modules,
showing data transfer between modules using arrows.
Example of a top-down design where a problem
(program) is broken into its components.

Rules:

Process: Represents a programming module e.g. a
calculation

Data couple: Data being passed from module to module
that needs to be processed

Flag: Check data sent to start or stop a process. E.g. check
if data sent in the correct format

Selection: Condition will be checked and depending on
the result, di�erent modules will be executed

Iteration: Implies that module is executed multiple times

Example:

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

4.4. Types of Errors

Syntax errors:

When source code does not obey rules of the language
Compiler generates error messages
Examples:

Misspell identi�er when calling it
Missing punctuation – colon after if
Incorrectly using a built-in function
Argument being made does not match data type

Run-time errors:

Source code compiles to machine code but fails upon
execution (red lines show up in Python)
When the program keeps running and you have to kill it
manually
Examples:

Division by 0
In�nite loop – will not produce error message,
program will just not stop until forced to

Logic errors:

Program works but gives incorrect output
Examples:

Out By One – when ‘>’ is used instead of ‘>=’
Misuse of logic operators

4.5. Corrective Maintenance

Corrective Maintenance is correcting identi�ed errors
White-Box testing: making sample data and running it
through a trace table
Trace table: technique used to test algorithms; make sure
that no logical errors occur e.g.

4.6. Adaptive Maintenance

Making amendments to:
Parameters: due to changes in speci�cation
Logic: to enhance functionality or more faster or both
Design: to make it more user friendly

4.7. Testing Strategies

Black box testing:

Use test data for which results already calculated &
compare result from program with expected results
Testing only considers input and output and the code is
viewed as being in a ‘black box’

White box testing:

Examine each line of code for correct logic and accuracy.
May record value of variables after each line of code
Every possible condition must be tested

Stub testing:

Stubs are computer programs that act as temporary
replacement for a called module and give the same
output as the actual product or software.
Important when code is not completed however must be
tested so modules are replaced by stubs

Dry run testing:

A process where code is manually traced, without any
software used
The value of a variable is manually followed to check
whether it is used and updated as expected
Used to identify logic errors, but not execution errors

Walkthrough testing:

A test where the code is reviewed carefully by the
developer’s peers, managers, team members, etc.
It is used to gather useful feedback to further develop the
code.

Integration testing:

Taking modules that have been tested on individually and
testing on them combined together

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

This method allows all the code snippets to integrate with
each other, making the program work.

Alpha testing:

This is the testing done on software ‘in-house’, meaning it
is done by the developers
Basically another term for ‘�rst round of testing’

Beta testing:

This is the testing done on the software by beta users,
who use the program and report any problems back to

the developer.
Basically another term for ‘second round of testing’

Acceptance testing:

A test carried out by the intended users of the system:
the people who requested the software.
The purpose is to check that the software performs
exactly as required.
The acceptance criteria should completely be satis�ed for
the program to be released.

CAIE AS LEVEL COMPUTER SCIENCE (9618)

WWW.ZNOTES.ORG

CAIE AS LEVEL
Computer Science (9618)

Copyright 2022 by ZNotes
These notes have been created by Zubair Junjunia for the 2017 syllabus
This website and its content is copyright of ZNotes Foundation - © ZNotes Foundation 2022. All rights reserved.
The document contains images and excerpts of text from educational resources available on the internet and
printed books. If you are the owner of such media, test or visual, utilized in this document and do not accept its
usage then we urge you to contact us and we would immediately replace said media.
No part of this document may be copied or re-uploaded to another website without the express, written
permission of the copyright owner. Under no conditions may this document be distributed under the name of
false author(s) or sold for financial gain; the document is solely meant for educational purposes and it is to remain
a property available to all at no cost. It is current freely available from the website www.znotes.org
This work is licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International License.

